Author Affiliations
Abstract
1 Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
2 Laser Plasma Department, Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague 8, Czech Republic
3 Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
4 Department of Physical Electronics, Faculty of Nuclear Science and Engineering Physics, Czech Technical University in Prague, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
5 Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
6 DESY Photon Science, Notkestraße 85, D-22607 Hamburg, Germany
7 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 – UPMC/CNRS/IRD/MNHN, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
8 Department of Physics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic
9 Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
We report on an experiment performed at the FLASH2 free-electron laser (FEL) aimed at producing warm dense matter via soft x-ray isochoric heating. In the experiment, we focus on study of the ions emitted during the soft x-ray ablation process using time-of-flight electron multipliers and a shifted Maxwell–Boltzmann velocity distribution model. We find that most emitted ions are thermal, but that some impurities chemisorbed on the target surface, such as protons, are accelerated by the electrostatic field created in the plasma by escaped electrons. The morphology of the complex crater structure indicates the presence of several ion groups with varying temperatures. We find that the ion sound velocity is controlled by the ion temperature and show how the ion yield depends on the FEL radiation attenuation length in different materials.
Matter and Radiation at Extremes
2024, 9(1): 016602
Author Affiliations
Abstract
1 ELI Beamlines, Institute of Physics, 5. května 835, 252 41 Dolní B?e?any, Czech Republic
2 Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), 46 Ul’yanov Street, 603950 Nizhny Novgorod, Russia
3 LULI—CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay
4 UPMC Univ Paris 06: Sorbonne Universities, F-91128 Palaiseau Cedex, France
5 Research Center Toptec, Institute of Plasma Physics, Sobotecká 1660, 511 01 Turnov, Czech Republic
6 Joint Institute for High Temperatures Russian Academy of Science (JIHT RAS), Moscow 125412, Russia
7 Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
8 Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
9 Department of Physics SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
10 European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
The design of ellipsoidal plasma mirrors (EPMs) for the PEARL laser facility is presented. The EPMs achieve a magnification of 0.32 in focal spot size, and the corresponding increase in focused intensity is expected to be about 8. Designing and implementing such focusing optics for short-pulse (<100 fs) systems paves the way for their use in future high-power facilities, where they can be used to achieve intensities beyond 1023 W/cm2. A retro-imaging-based target alignment system is also described, which is used to align solid targets at the output of the ellispoidal mirrors (with a numerical aperture of 0.75 in this case).
Matter and Radiation at Extremes
2019, 4(2): 024402

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!